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We extend the results of a previous paper to fluids of finite depth. We consider the 
Hamiltonian theory of waves on the free surface of an incompressible fluid, and derive 
the canonical transformation that eliminates the leading order of nonlinearity for finite 
depth. As in the previous paper we propose using the Lie transformation method since 
it seems to include a nearly correct implementation of short waves interacting with long 
waves. We show how to use the Eikonal method for slowly varying currents and/or 
depths in combination with the nonlinear transformation. We note that nonlinear 
effects are more important in water of finite depth. We note that a nonlinear action 
conservation law can be derived. 

1. Introduction 
Accurate descriptions of the sea-surface shape, while a difficult task, is necessary for 

many applications. Because the dynamical behaviour of the sea surface is difficult to 
describe exactly, some approximation is usually required. In a previous paper, Creamer 
et al. (1989, referred to as Paper I herein), we presented a useful approximation scheme 
that exactly captures the lowest-order nonlinear behaviour of surface waves, does well 
at higher orders, and also captures the important features of short waves interacting 
with longer waves. We considered only irrotational motion and ignored the effects of 
the wind and of surface tension. The method described in that paper has been used to 
discuss excitations of capillary waves by the wind (Watson & McBride 1992), and to 
produce a very realistic-looking simulation of an evolving ocean surface. Zakharov 
(1991) has applied a similar transformation to treat wind wave growth. 

Because of the apparent usefulness of the technique and the obvious importance of 
finite depth effects we have extended the method of Paper I to treat surface waves in 
finite depth. We also show how to solve the problem of slowly varying bottom 
topography and/or slowly varying currents in the Eikonal limit. For a complete 
discussion of the nonlinear transformation we refer the reader to Paper I. In order to 
make this paper readable by itself there will be some duplication of material; in 
particular, some of the notation will be repeated, but the differences caused by the finite 
depth will be noted. 

The general idea is to replace the usual functions describing the surface, namely the 
surface potential and the surface elevation, with two new functions and use linear 
dynamics in the new functions. We require that the solution of the linearized time- 
evolution equations in the new variable more nearly describes the true solution than 
does the corresponding linearized solution in terms of surface elevation and velocity 
potential. 
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The Hamiltonian for the system can be expanded in a power series in the wave-slope 
field. The quadratic term is responsible for describing the usual linear surface waves. 
Ordinarily the next term in the Hamiltonian is of cubic order and describes the leading 
nonlinearity. It is this term that we wish to remove so that the leading nonlinearity is 
quartic in the Hamiltonian or cubic in the equations of motion. This means that 
corrections to linear theory are a factor of (slope)2 smaller than the linear terms. 

It can be shown that a canonical transformation exists that will remove the third- 
order terms if there are no resonant interactions at that order. Phillips (1960) showed 
that there are no three-wave resonances for surface gravity waves of finite depth, so this 
leading nonlinear term can be removed. As the product of the depth and a typical 
surface wave vector approaches zero, the nonlinearities became significantly more 
important for a fixed surface wave slope. Consequently in very shallow water the 
transformation will not be useful except for small slopes. However, for typical oceanic 
conditions depending upon both the sea state and the depth, we expect the 
transformation to be useful for KD > t ,  where K is a dominant wave vector and D is 
the depth. 

Usually in shallow water the variation of the depth will be important. Consequently 
we have included a discussion of how to use the nonlinear transformation in 
conjunction with the Eikonal equations for slowly varying depths. We also note that 
slowly varying currents can be treated the same way. 

In the next section we establish the notation and in the third section we present the 
required transformation. In the fourth section we demonstrate the correct method for 
implementing the Eikonal equations and give some examples to show the applicability 
of the method. 

2. Surface-wave Hamiltonian 
Our starting point is the Hamiltonian for fully nonlinear surface waves. In order to 

express the surface-wave Hamiltonian in a convenient form, as well as for algebraic 
convenience, we introduce some notation. We wish to describe waves in terms of the 
canonical variables defined on the water's surface (Zakharov 1968), i.e. the surface 
elevation c(x, t )  and the velocity potential $(x, z ,  t )  evaluated at the surface 

0 = $[x, 0, tl, (1) 
where $(x, t )  satisfies Laplace's equation in the interior of the water. We write x for 
(x, y )  and a, for (az, a,). Three-dimensional partial derivatives of, for example, the 
velocity potential occur in the Hamiltonian, and these need to be expressed in terms of 
the velocity potential (or other functions) at the surface. Letf(x, t )  be any function at 
the surface. An interior function g(x, z ,  t )  is defined by solving Laplace's equation 

v2g = 0, 

g(x, Q 0 = f(x, 0,  (2) 

and ri-vg = 0 (3) 
on the bottom and sides (if any). Here ii denotes the normal to the surface. Thusfis 
the velocity potential at the surface, g is the velocity potential in the interior. The 
operators D, = (Dz, D,) and D, are defined by 

Thus, Dj is a linear (but non-local) operator from functions of (x,y) to functions of 
D j f =  ajgi,=5. (4) 

( X , Y ) .  
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The Hamiltonian for surface waves is equal in value to the energy and is (West 198 1, 
p. 33; Henyey et al. 1988) 

( 5 )  

where 5 and $s are the canonical variables. We have chosen units in which the density 
p = 1. The operators D are functionals of 5, thereby introducing nonlinearities into H. 
The complexity of surface-wave calculations is entirely in dealing with the D-operators. 
One method of working with the D is to expand in a power series in 5. Writing 
H = H,  + H3 + H4 + . . . we have, for example, 

H(5, $,I = -Id'X[$,(D,-(a,n.D,)$,+s5"1, 1 
2 

where we have introduced the operator 6(x). This operator and the higher-order terms 
of the Hamiltonian are most conveniently evaluated in Fourier space, where 

8(k) = k tanh (kh), k = Ikl. (7) 
The symbol h is the depth. This operator and the expression for H,  are the finite-depth 
versions of the corresponding infinite-depth expressions in Paper I. They were 
originally introduced by Miles (1977). The expression (7) used in (6) gives the correct 
linear dispersion relation for finite-depth surface waves. Introducing the Fourier 
transform of the canonical variables 

and (9) 

we have 

H3 = @n)2JJJ22--S d2k d2k d2k3 , ( k l + k , + k 3 ) ~ l $ 2 $ 3 ( k ~ + k ~ - k ~ - 2 8 2 8 3 ) .  (10) 
(2792 (2792 (2n)Z 

We have adopted the notation cl = 5,, and similarly for $. Again this is the same 
expression as in Miles (1977). The difference between the above expression for H3 and 
that in Paper I is that the last term in (10) would just be k,k3. 

The goal is now to find a transformation of variables for which the new H3 = 0. 

3. The Lie transform of [ and q5s 

The description in terms of the Fourier-transformed variables, 5, and $k turns out 
to be most convenient. We next introduce two interpolating functions Z(k,  A) and 
@(k,h)  where h varies between zero and one. (The time dependence is temporarily 
suppressed.) At h = 0, Z(k, 0) = 5(k) and @(k, 0) = $,(k). 

The fields Z(k,  h = 1) and @(k, h = 1) are to be the new fields. We now introduce a 
functional W that generates the changes in Z and @ as a function of A :  
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Here the notation Q1 denotes Q,(kl, A). The two functions D(1,2,3) = D(k,, k,, k3) 
and B are to be determined so that the new H3 is zero. In Paper I we showed that 
the new Hamiltonian K, can be written in terms of the old Hamiltonian, 
H =  H,+H3+H,+ ... as 

m, @) = ffZ(Z, @I + H,(Z, Q,) - W,(Z, @I, W(Z, @)I + . . a, (12) 

where { ,} is the usual Poisson bracket (see (19)). The idea is now to choose W so that 
the last two terms cancel. Thus if we ignore terms of fourth order in the slope, K is 
purely quadratic and the associated equations of motion are linear. It is straightforward 
to verify that 

with R = 8,(02 + 0, - 01) + 8,(0, + 8, - 8,) + B3(0, + 0, - 0,) 

then the third-order piece of the new Hamiltonian, K3, is zero. These expressions are 
similar to those in Paper I, except that some 8 have been replaced by their infinite-depth 
values. Using the notation 

& = @(A = l ) ,  y= Z(A = 1 )  (16)  

for the new canonical variables we have 

(17) 

It remains to implement the transformation between the old and new variables. This 
identical to what is done in Paper I, but will be repeated here for readability; more 
detail can be found in the original paper. The functional, W, generates the 
transformation. Let A(A) be either Q, or 2. Then 

where the Poisson bracket is defined by 

The boundary conditions are 

@(A = 0) = $., Z(h = 0) = 5. 
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The equations to be solved are 

In our experience, integrating the transformation equations is much easier than 
integrating the equations of motion, and it is only necessary to perform the 
transformations at times for which a description of the wave field is desired. 

In order to obtain the velocities it is necessary to calculate a&, t)/at. This is most 
easily obtained by differentiating (21) with respect to time and integrating it as a 
function of h simultaneously with (21) and (22). 

4. Eikonal equations 
We now consider the possibility that there are slowly varying currents present or that 

the depth is slowly varying. We wish to demonstrate that the proper action transport 
equations are given in terms of the new variables. For simplicity we consider only the 
case of a horizontal current, u. The velocity in the presence of this current is 
decomposed as usual into 

An additional term appears in the Hamiltonian: 

u = u+V$.  (23) 

Other new terms in the Hamiltonian involve the derivative of the slowly varying 
current u and are therefore ignored. In order to simplify the discussion, we suppose 
that the fluid can be approximately divided into three regions. In the first and third 
regions the bottom and the current do not vary. In the middle region they may both 
change slowly. 

Now imagine a wave packet that is essentially localized in the first region at an initial 
time and propagates through region two and into region three so that at sometime it 
is entirely within region three. If we were solving this problem in the linear wave 
approximation we would consider the usual ray tracing and action conservation 
equations as discussed in Whitham (1974). 

We first give a prescription for solving this propagation problem and then we will 
justify the prescription. We will discuss only the finite-depth problem, but the variable- 
current solution follows essentially the same steps. 

Step one: transform the initial wave packet using the Lie transform appropriate for 
the initial depth assuming constant initial depth. 

Step two: propagate from the initial depth to the final depth using the Eikonal 
equations for a linear system, but using as initial conditions the transformed variables 
found in step one. 

Step three: transform the final wave packet back to the physical surface variables, 
now using the Lie transform appropriate for the final depth, assuming constant final 
depth. 

The argument supporting steps one and three relies heavily on the fact that the Lie 
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FIGURE 1. Surface waves for a depth of 1 m and a wavelength of 2x. The level of the troughs has been 
adjusted to better aid the comparison. The dot-dash curve is a linear <(x) = 0.2 cos x, the dashed curve 
is a Stokes wave, and the solid curve is our nonlinear approximation. 

transform of a wave packet remains where it started. It changes its shape, but not its 
position. No part of the disturbance moves to a new location. This was demonstrated 
in Paper I. That means that it only knows about the local bottom, which implies that 
if the local bottom is flat, or nearly so, we can use the Lie transform for a flat bottom 
appropriate to the local depth and the new wave packet will be the same as if we 
transformed with the exact transformation. To make this latter point clearer let us 
review the procedure to find the nonlinear transformation. 

We start with the exact H as given by ( 5 ) .  We then imagine expanding in powers of 
the surface height. This could be done in principle numerically, but fortunately we do 
not have to actually do it. Then we imagine finding Win (12) so that the H3 term is 
cancelled. The higher-order terms are neglected and the remaining H, is given by 

This is identical in form to the usual quadratic Hamiltonian, except that q5s, 5 are the 
transformed variables. Thus to solve the equations of motion we need only solve linear 
equations. Now for a slowly varying bottom this problem can be treated via Eikonal 
methods, Whitham (1974). The important point is that the Lie transform - even the 
exact form - does not change the form of H2.  It only changes the variables q5s and 6. 
Thus the Lie transform for a flat bottom appropriate to the local depth will give the 
same H,, and because the transform is local in the sense that it does not move part of 
the wave packet elsewhere, the exact transform and the locally flat transform will give 
the same new variables 

Thus the prescription is to transform to new variables, propagate via the usual ray 
equations and action transport equations, and then transform back using (1 1) for the 
appropriate depth. Nonlinear effects will not show up in the ray equations, but they 
will show up in the action equations since it is the action in the new variables that is 
most nearly conserved. 

and 5. 
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FIGURE 2.  (a) The solid curve is the initial deep-water wave-height spectrum. The dashed curve is the 
spectrum after propagation into water 10 m deep. Although a wide range of Fourier components 
were used in the nonlinear transformation, all Fourier components of the wave height for 
wavenumber greater than 0.2 have been set to zero in order to make it easier to see the effects of 
propagation. (b) A typical deep-water sea surface generated from the spectrum in (a). The solid line 
can either be interpreted as the surface in linear approximation or as the transformed surface 
variables. The dashed line is the actual sea surface predicted by the nonlinear transformation. (c)  The 
surface waves in (b) were transported via the Eikonal equations into water 20 m deep. Note that the 
transformation has raised and narrowed the peaks. ( d )  The surface waves in (b) were transported via 
Eikonal equations into water 10 m deep. 

In order to illustrate the method and to show some of the boundaries of 
applicability, we have constructed several examples. A sample calculation showing the 
nonlinear surface which results from a simple sine wave in the linear approximation is 
shown in figure 1. The input is a linear wave <(x) = 0.2 cos x. The top curve is the linear 
surface wave and the bottom curve is the Stokes wave. The middle curve is our 
approximation. The depth is 0.7 and the strength has been adjusted so that all waves 
have about the same peak-to-peak wave height. This particular situation is very 
nonlinear. 

In this example with a steep wave, in shallow water, the next-order nonlinear terms 
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FIGURE 3. The conditions for this figure are the same as figure 2 except that the spectrum has been 
multiplied by a factor of two. At 20 m depth the nonlinear transformation has a modest effect as 
shown in (c) ,  but at 10 m depth the transformation has a very large effect and care should be taken 
in deciding whether it is still meaningful. 

are beginning to be important as can be seen by comparing the middle and bottom 
curves. Nevertheless it is a definite improvement over the linear approximation. 

We now consider the evaluation of a spectrum of waves travelling from deep water 
to shallow water. Here we will be able to illustrate the calculations for a realistic wave 
field propagating over a slowly changing bottom. The first spectrum that we used is 
shown in figure 2(a).  The specific form of the one-dimensional wave height spectrum 
was chosen to be 

K 2  
( K 2  + Ki)2.5 ' 

@(K) = const. 

The solid line is the spectrum in deep water, and the dotted line is the spectrum 
obtained by solving the Eikonal equations for transport across a slowly decreasing 
depth ending in water 10 m deep. Figures 2(b), 2(c )  and 2 ( d )  all show a realization of 
the surface height after propagating to a final depth. The solid curve is the new surface 
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height variable and as such does not represent a physical surface. The dotted curve is 
the actual water surface height. For purposes of plotting, all Fourier components for 
the wavenumber greater than 0.2 rad m-l have been set equal to zero. Note that in deep 
water, figure 2(b), the nonlinear transformation does not have much effect. Thus one 
can interpret all the solid curves as the result of doing linear dynamical calculations. 
In figure 2(c) the final depth is 20 m and we can see that there has been a significant 
narrowing of the peaks and an increase in height for the higher crests. In figure 2 ( d )  
an example is shown at a depth of 10 m. Here we begin to see significant nonlinear 
behaviour . 

In order to see the effect of a more vigorous wave field, we increased the spectrum 
by a factor of 2, as shown in figure 3. Now there is an increase in nonlinear behaviour 
- as can be observed in figure 3(d) .  This suggests that this particular combination of 
wave height spectrum and depth is nearly too nonlinear to be treated by these methods. 

5 .  Conclusions 
In this paper, we have shown how to incorporate the leading-order nonlinearities of 

shallow-water, irrotational surface waves in a calculational scheme that (i) preserves 
the canonical, Hamiltonian structure of the theory, (ii) provides a resulting linear 
theory of surface dynamics, and (iii) is computationally efficient. We showed how to 
incorporate this scheme into an Eikonal calculation involving a sloping bottom. The 
inclusion of nonlinearities into the Eikonal method is usually non-trivial (Whitham 
1974 devoted a good part of his book to this subject), but we have shown how the 
leading-order nonlinearities can be trivially incorporated. 

The figures clearly show that typical oceanic conditions can be treated by this 
method, but that care must be taken if the water becomes too shallow or the height 
spectrum becomes too large. Because of the complicated dependence on both the 
energy spectrum and the depth, it is not easy to be precise about the range of validity. 
As the depth approaches zero, the effective nonlinearity increases and at some depth 
the fourth-order terms in the transformed Hamiltonian will be comparable to the 
second-order terms. Other means than the method proposed here are necessary for that 
situation. Since strong nonlinearities are important in describing solitary shallow-water 
waves, the proposed method would be of doubtful utility for describing such waves. 

The calculational method developed in this paper has other areas of use. In a recent 
paper, Ding & Farmer (1993) calculated statistics on breaking wave events by 
simulations of the sea surface using only linear variables. Given the inadequacy of the 
linear stochastic model of the ocean surface (visually it does not look at all realistic), 
Ding & Farmer suggest that something like our method be incorporated into the 
Monte-Carlo studies. Looking at breaking wave statistics in shallow water would 
require the extension developed in this paper. 

This work was supported by the Office of Naval Research on the grant N40014-90- 
J-4 135. 
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